Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs
نویسندگان
چکیده
Algorithms for the construction of spanning planar subgraphs of Unit Disk Graphs (UDGs) do not ensure connectivity of the resulting graph under single edge deletion. To overcome this deficiency, in this paper we address the problem of augmenting the edge set of planar geometric graphs with straight line edges of bounded length so that the resulting graph is planar and 2-edge connected. We give bounds on the number of newly added straight-line edges and show that such edges can be of length at most 3 times the max length of the edges of the original graph; also 3 is shown to be optimal. It is shown to be NP-hard to augment a geometric planar graph to a 2-edge connected geometric planar with the minimum number of new edges of a given bounded length. We also provide a constant time algorithm that works in location-aware settings to augment a planar graph into a 2-edge connected planar graph with straight-line edges of length bounded by 3 times the longest edge of the original graph. We prove that this problem cannot be solved locally if the nodes do not know their coordinates.
منابع مشابه
Approximating the Edge Length of 2-Edge Connected Planar Geometric Graphs on a Set of Points
Given a set P of n points in the plane, we solve the problems of constructing a geometric planar graph spanning P 1) of minimum degree 2, and 2) which is 2-edge connected, respectively, and has max edge length bounded by a factor of 2 times the optimal; we also show that the factor 2 is best possible given appropriate connectivity conditions on the set P, respectively. First, we construct in O(...
متن کاملMinimum Weight Connectivity Augmentation for Planar Straight-Line Graphs
Connectivity augmentation is a classical problem in combinatorial optimization (see [4, 5]). Given a graph G = (V,E) and a parameter τ ∈ N, add a set of new edges E+ such that the augmented graph G′ = (V,E ∪ E+) is τ -connected (resp., τ -edge-connected). Over planar straightline graphs (PSLGs), it is NP-complete to find the minimum number of edges for τ -connectivity or τ -edge-connectivity au...
متن کاملAugmenting the Connectivity of Planar and Geometric Graphs
In this paper we study connectivity augmentation problems. Given a connected graph G with some desirable property, we want to make G 2-vertex connected (or 2-edge connected) by adding edges such that the resulting graph keeps the property. The aim is to add as few edges as possible. The property that we consider is planarity, both in an abstract graph-theoretic and in a geometric setting, where...
متن کاملConnectivity augmentation in planar straight line graphs∗
It is shown that every connected planar straight line graph with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar straight line graph with at most b(2n − 2)/3c new edges. It is also shown that every planar straight line tree with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar topological graph with at most bn/2c new edges...
متن کاملConnectivity augmentation in plane straight line graphs
It is shown that every connected planar straight line graph with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar straight line graph with at most b(2n − 2)/3c new edges. It is also shown that every planar straight line tree with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar topological graph by adding at most bn/2c edge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010